Cambridge International AS \& A Level

MATHEMATICS
 9709/62
 Paper 6 Probability \& Statistics 2
 October/November 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance

\hline \multirow[t]{4}{*}{1(a)} \& $\frac{20.5}{40}=0.5125$ \& B1 \& Accept 0.513 or $\frac{41}{80}$. Condone $\frac{20.5}{40}$

\hline \& $\frac{40}{39}\left(\frac{10.728}{40}-\left({ }^{\prime} 0.5125^{\prime 2}\right)\right)$ or $\frac{1}{39}\left(10.728-\frac{20.50^{2}}{40}\right)$ \& M1 \& Biased variance $\left(0.005544\right.$ or $\left.\frac{887}{160000}\right)$ scores M0 A0.

\hline \& $$
0.0056859 \text { or } 0.00569(3 \mathrm{sf}) \text { or } \frac{887}{156000}
$$ \& A1 \& CAO

\hline \& \& 3 \&

\hline \multirow[t]{4}{*}{1(b)} \& $$
\left.\left[11 \times{ }^{`} 0.5125^{\prime}+0.5\right]\right)=6.1375 \text { or } \frac{491}{80} \text { or } 6.14(3 \mathrm{sf})
$$ \& B1 FT \& FT their 0.5125

\hline \& $11^{2} \times{ }^{\prime} 0.0056859$ ' \& M1 \& | With nothing added. |
| :--- |
| Using their variance in (a) (no sd/var confusion) |

\hline \& 0.688 (3sf) \& A1 \& CAO

\hline \& \& 3 \&

\hline
\end{tabular}

Question	Answer	Marks	Guidance
2(a)	E.g. Bias towards students who play instruments or only music students	B1	OE Or any reason that some are excluded e.g. because it is lunchtime or because the music building is chosen or any suggestion that opinions may not be independent. Note: 'not representative of all students' needs qualifying
	or e.g. the six will possibly be friends/have similar music preferences	$\mathbf{1}$	

Question	Answer	Marks	Guidance
$2(\mathrm{~b})$	$28,119,207$	B1	B1 for 28, 119 (condone 028).
		B1	B1 for 207 and only 3 values stated.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(a)	$0.25 \pm z \sqrt{\frac{0.25 \times 0.75}{140}}$	M1	Expression of correct form (allow M1 for just one side stated). Must be a z-value.
	$z=2.054$ or 2.055	B1	
	0.175 to 0.325 (3sf)	A1	Must be an interval.
		3	
3(b)	$\begin{aligned} & 0.90 \times 0.95 \times 0.01 \\ & +0.90 \times 0.05 \times 0.99 \\ & +0.10 \times 0.95 \times 0.99 \end{aligned}$	M1 M1	M1 for one correct triple product. M1 for all correct and added.
	0.147	A1	SC If zero scored award B1 for a 2 or 3 term expression of the form $0.90 \times 0.95[\times c]$ OE. $(0<c \leqslant 1)$
		3	

Question	Answer	Marks	Guidance
4(a)	Fireworks are destroyed when tested.	B1	
		1	
4(b)	H_{0} : Pop mean time lasted $($ or $\mu)=30$ H_{1} : Pop mean time lasted (or μ) <30	B1	Not just 'mean'.
	$\pm \frac{29-30}{\frac{5}{\sqrt{100}}}$	M1	For standardising. Must have $\sqrt{100}$. Use of totals $\mathrm{N}(3000,2500)$ giving $\frac{(2900-3000)}{\sqrt{2500}}$ scores M1. No mixed methods.
	±-2	A1	
	$-2>-2.326$ [Do not reject H_{0}]	M1	Accept -2.326 to -2.329 . Valid comparison or area comparison $0.0228>0.01$ or $0.9772<0.99$. Accept CR method $28.837<29$ or $30.163>30$.
	There is not enough evidence that mean time lasted is less than 30 seconds OR Not enough evidence to support the inspector's suspicion	A1 FT	In context (if used need mean or time / condone average instead of mean), not definite, e.g. not 'mean time lasted is not less than 30 seconds'. No contradictions. Note 2 tailed test can score B0 M1 A1 M1 (comparison with 2.574-2.579) A0 (no FT).
		5	
4(c)	Yes. Because population distribution is unknown [condone not Normal].	B1	Both needed. Condone X for parent population.
		1	

Question	Answer	Marks	Guidance
5(a)	$\mathrm{e}^{-2}\left(1+2+\frac{2^{2}}{2!}\right)$	M1	$\mathrm{P}(X<3)$ any λ. Allow one end error.
	0.677 (3sf)	A1	Unsupported correct answer scores SC B1 only.
		2	
5(b)	$\mathrm{N}(40,40)$	M1	SOI
	$\frac{50.5-40}{\sqrt{40}}[=1.660]$	M1	For standardising with their values. Allow with wrong or no cc must have square root.
	$\mathrm{P}(z>$ '1.660' $)=1-\Phi\left({ }^{\prime} 1.660{ }^{\prime}\right)$	M1	Correct area consistent with their working.
	0.0485 or 0.0484 (3 sf)	A1	
		4	
5(c)	$\lambda=10$	B1	Condone mean $=10$.
	$\mathrm{e}^{-10}\left(\frac{10^{8}}{8!}+\frac{10^{9}}{9!}+\frac{10^{10}}{10!}+\frac{10^{11}}{11!}\right)$	M1	Allow any λ (allow one end error).
	0.477 (3sf)	A1	Unsupported correct answer scores SC B2 only.
		3	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(0)=\frac{1}{10} \\ & \mathrm{H}_{1}: \mathrm{P}(0)<\frac{1}{10} \end{aligned}$	B1	Accept p.
		1	
6(b)	For B(30,0.1)	M1	Used not just stated.
	$\mathrm{P}(X=0)=0.9^{30}[=0.0424][<0.1]$	M1	
	$\mathrm{P}(X=0$ or 1$)=0.9^{30}+30 \times 0.9^{29} \times 0.1=0.184[>0.1]$	B1	Accept 0.184 or 0.183 .
	Rejection region is 0 zeros	A1	Dependent on M1 M1 and at least one comparison, no errors seen. SC One unsupported correct answer 0.0424/0.184(or 0.183) and correct rejection region scores B1; with comparison with 0.1 scores B2. Two unsupported correct answers 0.0424 and 0.184 (or 0.183) and correct rejection region scores $\mathbf{B 2}$ or if with one comparison with 0.1 scores B3.
		4	
6(c)	0.0424	B1	FT their (b) must have a critical region (only follow though Binomial), dependent on answer <0.1.
		1	

Question	Answer	Marks	
$6(\mathrm{~d})$	$\operatorname{Bin}\left(30, \frac{1}{40}\right)$	$\mathbf{B 1}$	SOI
	$1-0.975^{30}$	M1	FT their rr and with Bin(30, $1 / 40)$).
	$0.532(3 \mathrm{dp})$	$\mathbf{A 1}$	SC Unsupported correct answer scores B2 only.
		Not concluding that the probability is less than $\frac{1}{10}$, when in fact it is.	$\mathbf{3}$
		$\mathbf{B 1}$	In context.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)(i)	$k \int_{0}^{2}\left(4 x-x^{2}\right) \mathrm{d} x=1$	M1	Attempt integral $\mathrm{f}(x)$ and $=1$. Ignore limits (must see a power increase for attempted integration).
	$k\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}=1$	A1	Correct integration and correct limits.
	$k \times \frac{16}{3}=1\left[k=\frac{3}{16}\right]$	A1	OE AG Convincingly obtained. At least one interim step. No errors seen.
		3	

Question	Answer	Marks	Guidance
7(a)(ii)	$\frac{3}{16} \int_{0}^{2}\left(4 x^{2}-x^{3}\right) \mathrm{d} x$	M1	Attempt integral $x \mathrm{f}(x)$. Ignore limits. (must see a power increase for attempted integration). Condone missing k.
	$\frac{3}{16}\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}$	A1	Correct integration and correct limits. Condone missing k.
	$\frac{5}{4}$	A1	Unsupported correct answer scores SC B2 only.
		3	
7(b)	Symmetrical frequency density graph, 0 to 5 , showing area 0.2 to left of a	B1	With a to the left of centre.
	Either 0.2 between 5-a and 5-or 0.8 between 0 and 5-a	B1	Shown on graph or stated (5-a seen or implied). a must be non-numerical.
	$[\mathrm{P}(2.5<\mathrm{Y}<5-a)]=0.3$	B1	Must be clearly final answer. a must be non-numerical.
		3	

